附录

一、FLAIR 与世界知名研发机构、业界伙伴签署合作项目一览表

研发机构、业界伙伴	合作项目
中国科学院深圳先进技术研究院	共建"国家工业与信息部面向机器人和智能制造领域的创新成果产
	业化公务服务平台-香港基地",合作开展智能自动化制造、机器
	人、柔性生产等领域的研发工作,促进技术创新、产品升级与产业
	链延伸·成为双方科技攻关和产学研用的重要支撑平台。
香港华为国际有限公司	将在机器学习和人工智能(AI)项目中共同进行研发。利用华为昇
	腾系列产品的算力加速各种 AI 模型的研发。
域塔物流科技集团有限公司	有意向成立合资公司 · 将在智能物流仓储领域深度合作 · 结合双方
	优势为物流业提供高效、高增值的解决方案。
诺言科技有限公司	将合作成立合资公司·把 AI 及机器人技术应用于不同行业·包括
	开发易用型多功能移动机器人智能控制平台。
西门子有限公司	将共同探索利用边缘计算、IIoT 和 5G 科技·开发应用于工业设备
	预测及健康管理的关键技术研究的传感器用处开发。FLAIR 开发的
	技术将列入西门子全球创新合作平台 Xcelerator · 向世界推广。
思谋集团有限公司	合作进行工业 AI 和机器人技术研发。
深圳市人工智能与机器人研究院	以科技合作、产学研结合、科技成果转化、高科技创新创业投资、
	国家级研发平台共建、人才培养与交流等形式,开展长期合作。共
	同承担国家重大攻关项目和专项项目,解决企业的技术需求,促进
	企业产业创新升级,推动成果转化,实现双方合作共赢。

二、"FLAIR 开放日"向业界和公众展示的创新技术方案和科研成果(下表为部分展示项目)

项目	简介
(1) 天工开物:工业人工智能	以人工智能和数字技术助业界升级转型,创新产品及服务,实现营
应用平台	运增值。此平台具通用性高、易用性好、架构精简及省时等亮点,
	通过深度学习、机器学习和 AI 应用软件模板,迅速为客户提供适用
合作研发机构 :香港生产力促	于工业应用的软件开发方案。
进局(生产力局)	
(2) 利用边缘计算、IIoT 和 5G	本智能故障监测系统利用人工智能、边缘计算、工业物联网、分析
科技,开发应用于工业设备预	自动门和其他工业设备的当前状态,监察及预测故障发生,并且利
测及健康管理的关键技术	用深度学习预测设备剩余寿命。此项目于"2023 年日内瓦国际发明
	展" 荣获金奖。
合作研发机构 :香港特别行政	
区政府机电工程署	
(3) 开发应用协作机器人与柔	机器人先利用灵活的"手"(协作机器人)全方位视角检查复杂物件 ·
性半自动化技术的装配生产线	再用智能"眼睛"(高分辨率相机)检测表面上的微小缺陷。最后交由
	系统的智能"AI 大脑"自主寻找产品的最佳视角·快速适应生产线上
合作研发机构 :生产力局、	新的产品,并通过有限的正品样本进行无监督学习来探索未知的缺
宝力机械有限公司	陷·实现智能检测产品质量。根据缺陷检测结果计算有效的后处理

	参数・例如去毛刺所需的位置、轨迹和力・从而提供一个完整解决
	方案。
	^^^ 项目在香港及内地均已取得专利,目标是不断提升检测准确率,提
	高产品质量,节省人力成本,加快产品转型流动。
	此项目入围香港科学园 IDEATION(培育科创企业)计划,并于
	2023 年 TechConnect 荣获全球创新奖。
│ │(4) 开发应用于装配机器人的	通过增强现实(AR)眼镜实现与机器人的直观交互,使操作员可以
(4) / 及应用了表配机品入时 交互式控制系统	在工地现场或远程监控和控制工业机械臂。操作员也可以透过 AR为
又 互以注则示机	机器人演示动作·让机器人学习·并将结果植入到机器人手臂上以
┃ ┃ 合作研发机构 :生产力局、	机备入澳小坳下,还机备入子才,开村纪未恒入封机备入于身工以 执行任务,省却繁复的编程步骤。此系统亦提出一个全新人机协作
香港智能自动化技术应用联合	框架・安全使用机器人的同时维持一定效率。机器人使用是基于视
研究中心(由生产力局、清华	觉的自适应控制器执行指定任务,操作员在零空间(null space)与
大学自动化系和清华珠三角研	机器人协作进行。此外,机器人还可以通过动态运动基元(DMP)
】 究院联合成立) 	在任务空间和零空间中同时学习操作员的演示。AR设备令操作员可
	以在AR环境中操控虚拟机器人进行演示·让相关数据的收集过程变
	得简单高效。此项目荣获 2023 年 TechConnect 全球创新奖。
(5) 通过机器学习方法预测产	本技术涉及一种基于 AI 的产品质量控制系统,用于分析在制造操作
│ 品质量并进行根本原因分析 │	中获得的各种生产工序数据・并执行产品质量预测和根本原因分
	析·以提升产品质量・减少成品率损失・提高生产工厂自动化能
	力。此项目荣获"2023 年日内瓦国际发明展"铜奖。
(6) 生产过程的智能监测与决	此系统性可视化交互软件平台是基于日志资料进行流程监测、瓶颈
)策支持方法	识別与分析根本原因・及流程潜在瓶颈预测并提供预案・以预测未
	来瓶颈将在何时何地发生,以及它们将如何发生,为物流及衍生供
	应链产业提供"运输流程瓶颈检测与预测"。此项目入围香港科学园
	IDEATION(培育科创企业)计划。
(7) 易用型多功能移动机器人	此模组化移动机器人平台,能够完成不同行业的加工和生产中的多
智能控制平台	种任务,具有横向及纵向扩展能力、设置时间短、易用、先进导
	航、支持长期运行等优点。此项目入围香港科学园 IDEATION (培
合作研发机构 :诺言科技有限	育科创企业)计划
公司	
(8) 工业产品表面缺陷的视觉	此系统是一个基于 AI 的检测框架来检测和评估 LCD 屏幕制造过程中
检测系统	的缺陷。系统会根据自动缺陷分割和分类结果以评估如何处理缺陷
	产品。自主研发的自动标记算法能兼容有限的像素级标注数据,确
	保系统仍能提供令人满意的检测精度,从而做到提高产品质量并减
) 少良率损失的效果。此项目入围香港科学园 IDEATION(培育科创
	企业)计划。
	<u>'</u>