Hong Kong Textile and Fashion Industry – Road to Sustainability

Green Textile Innovations and Technologies

The Hong Kong Research Institute of Textiles and Apparel Katherine Chan, Director of Business Development

COPYRIGHT © HKRITA

About HKRITA

- was established in 2006
- is funded by the Innovation and Technology Commission of the HKSAR government
- PolyU being the host institute

Our vision -

to be the **leading centre** of excellence in **research, development and technology transfer** in fashion and textile industry.

Our mission -

to be a Hong Kong based world renowned research institute for the textiles and clothing industry by concerted and focused R&D efforts to enhance the economic development of the HKSAR, mainland China and overseas. And by facilitating technologies transfers of R&D results, in pursuance of continual development technologies to enhance the competitiveness of the industry locally and internationally.

COPYRIGHT © HKRITA

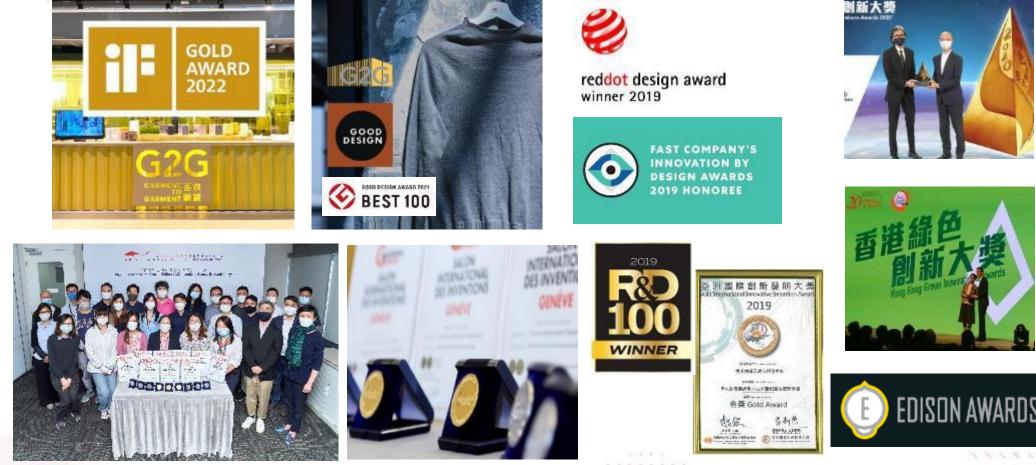
Technology Focus

Advanced textiles and clothing production technologies

Enhanced industrial systems and infrastructure

New materials and textiles and apparel products

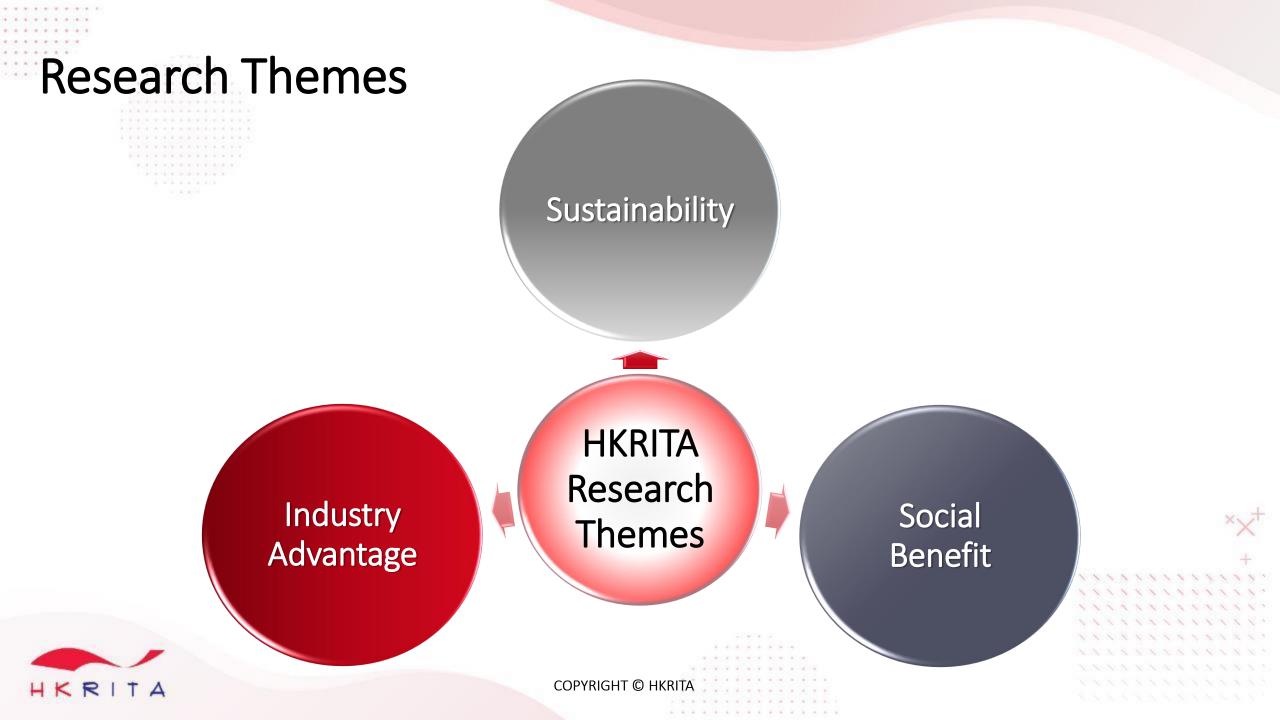
Innovative design and evaluation technologies

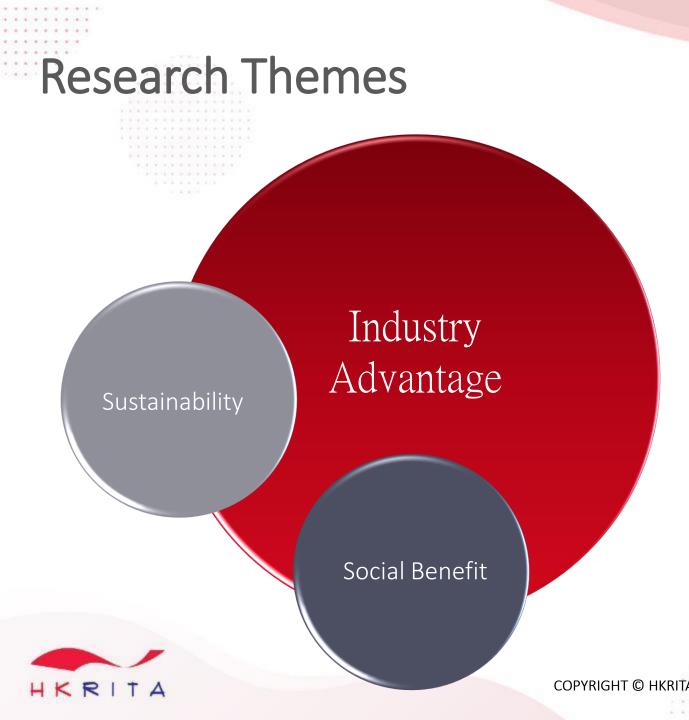


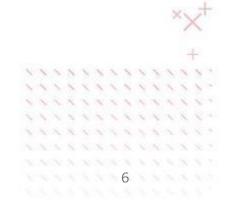
HKRITA

3

Achievement - Awards


Until April 2023: 105 Hong Kong, mainland and overseas




COPYRIGHT © HKRITA

4

- → Industry 4.0
- → Smart Manufacturing
- → Demand Predictives & Analytics
- → Manufacturing Technologies
- → Materials Science
- → Enterprise & Supply Chain Solutions
- \rightarrow Resource Optimisation
- → Agile Supply Chains

	*	+				. *	-												
i																			
6	*		-	*															
i		+		٠	*														
ł,				٠															
											•								
														÷	÷				
										4				-	÷		÷		
														×					-
																	÷		
													3			e.			
													×						
											8						3		

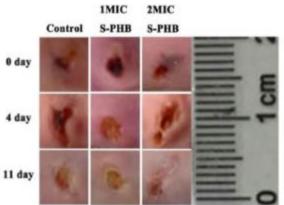
Manufacturing technologies and Materials

- 1. Bio-based PHBV/PLA anti-bacterial textiles
- 2. Far infra-red reflective textiles for thermal management

1. Bio-based PHBV/PLA anti-bacterial textiles

The bio-based PHBV/PLA antimicrobial fibers possess advantages of both natural and artificial antimicrobial fibers. The fibers are biodegradable and eco-friendly, as well as effectively antimicrobial and anti-mite.

- PHB-Oligomer extract from PHBV is naturally antibacterial (>99%) with wound healing property
- 100% bio-based and biodegradable while other artificial antimicrobial fibers may release chemical or silver particles that leads to environmental pollution
- Applicable on both filament and staple yarn
- Originally developed for medical & healthcare, also suitable for apparel & accessories (socks, shoe uppers) and home textile application




1. Bio-based PHBV/PLA anti-bacterial textiles

• PHBV/PLA – Bio Based & Bio Degradable Material

- PHB-Oligomer extract from PHBV is naturally anti-bacterial and the material has wound healing property
- Also Anti-dust mite property
- PLA is bio-based and bio-degradable material
- Combination of PHBV and PLA gives good hand feel, durability, easy to handle in production

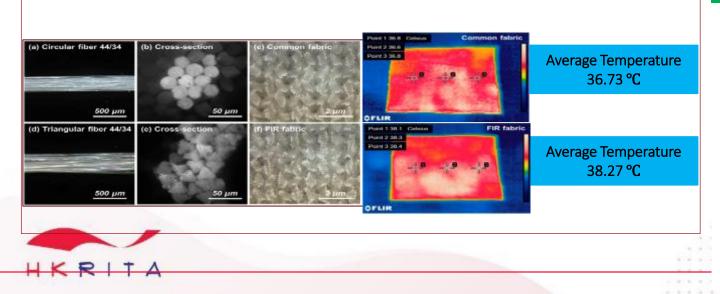
2. Far infra-red reflective textiles for thermal management

Testing Result on Thermal Performance

1) <u>GB/T 30127-2013</u>

- Emissivity <u>91.85%</u> (>88%)
- Temperature Difference <u>2.11°C</u> (>1.4 °C)

Which is ascribed to the enhanced far-infrared radiation absorption efficiency.


Applications

- Home Textiles
- Medical & Healthcare
- Apparels (e.g. Sportswear)
- Cosmetics
- Veterinary

Advantages

This Green Physical Modification Method is :


- More cost-competitive & eco-friendly, zero chemical addition;
- Permanent FIR function, never washout or breakdown;
- Higher spinnability and better quality and physical performance;
- More diversities in terms of color, fineness, crosssection shapes, to be multi-functional and etc.

Microplastic Fiber Separation System by Sweeping Acoustic Waves

Concept:

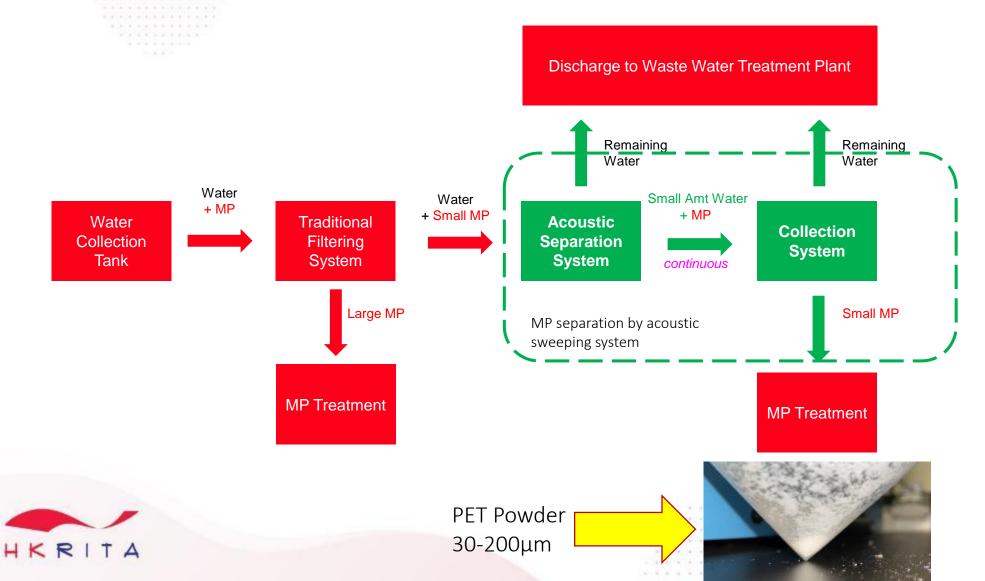
Microplastic Fiber Separation System by Sweeping Acoustic Waves

- Using sweeping acoustic waves to separate and collect microplastic (MP) fibers from textile wastewater system through the use of an acoustic chambers
- Microplastic fibers collected can be agglomerated and handled easily for aftertreatment.

COPYRIGHT © HKRIT

- Key component of the chamber:
 - Transducers

HKRI


- Needle Valves
- Sensory System

*X⁺ + 12

Microplastic Fiber Separation System by Sweeping Acoustic Waves

13

Illustration of the Pilot Separation System

Preliminary Results of Different Parameters

Amplitude (Sweeping Period: 1000ms)

Sample		(Sample solut	Before ion injecting to ic chamber)	the	After (Sample solution collected from the water outlet)							
Condition		1mL T20 + 0.0)1g 20um + 500									
Volume (ml)			500	2300								
	No Acoustics	7,3	807,750	4,025,767								
	175mVpp	8,3	379,750			2,598,233						
No. of particles	200mVpp	8,3	379,750			2,598,233						
	225mVpp	7,8	807,750	1,908,233								
	250mVpp	8,7	'11,333		3,204,667							
	Formula	No Acoustics	175mVpp	20	0mVpp	225mVpp	250mVpp					
Overall efficiency	100% - (After/Before×100%) 45.49%	65.59%	69	9.28%	75.80%	63.54%					

COPYRIGHT © HKRITA

111111111111

14

Smart Garment Sorting for Post-consumer Garment Recycling

Smart Garment Sorting System

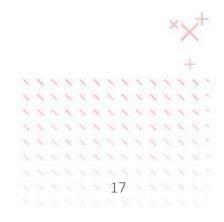
Identify and Sort 4 categories:

Garment Type, Composition, Textile Structure

 Speed: 1 second to identify; 1 tons of garment in an hour

16

- Accuracy: over 90%
- Over 214 classes of fabric compositions and combinations
- Over 11 types of garment

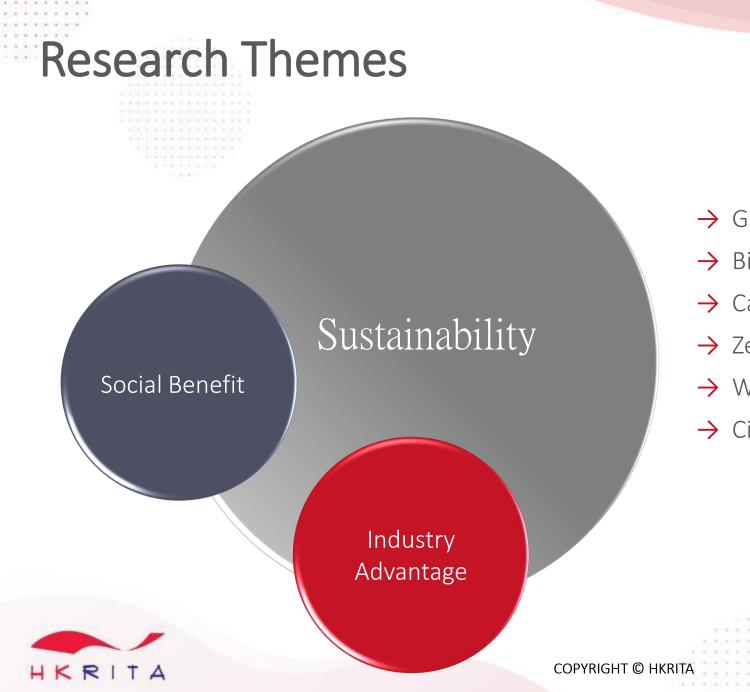


COPYRIGHT © HKRITA

Electro-adhesive fabric gripper for automated garment manufacturing

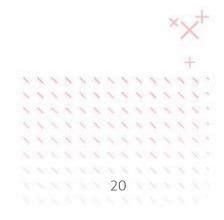
To facilitate Industry 4.0 manufacturing in textile and garment industry


- → Enhancement of automation by robotics in manipulating fabric in garment industry
- → A robust electrostatic gripper will be developed to manipulate large pieces of thin and flexible fabric
- \rightarrow The gripper will be able to:
 - → Selectively pick up individualize (one piece of) fabric from a stack
 - \rightarrow (Quickly) Pick and (Quickly) Place
 - → Placing without wrinkles

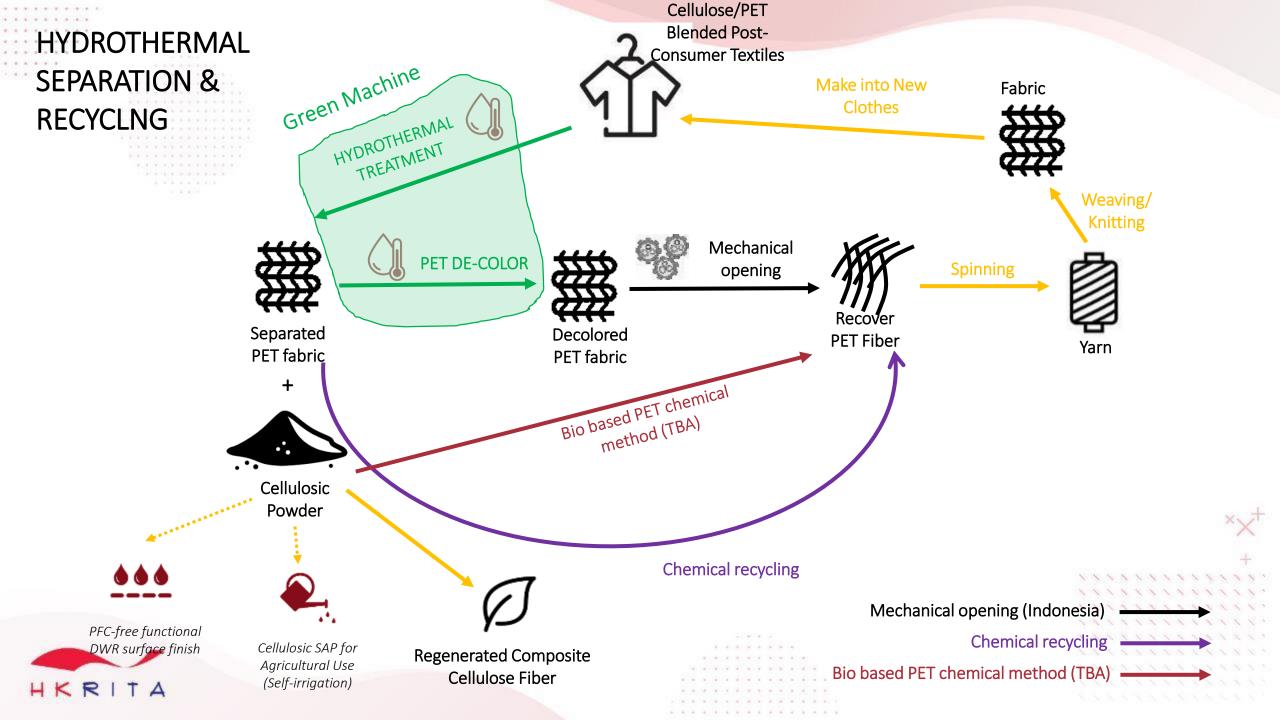


- \rightarrow Green Chemistry
- \rightarrow Biodiversity
- → Carbon Neutrality
- \rightarrow Zero Discharge
- → Waterless Processes

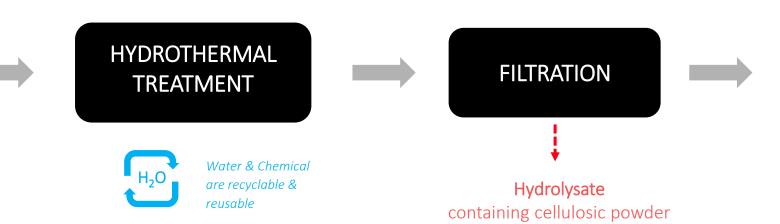
1111111111111111


19

→ Circularity



Hydrothermal Separation & Decolorization of PET (Green Machine)



Hydrothermal Separation System

Recovered PET Fibre for spinning

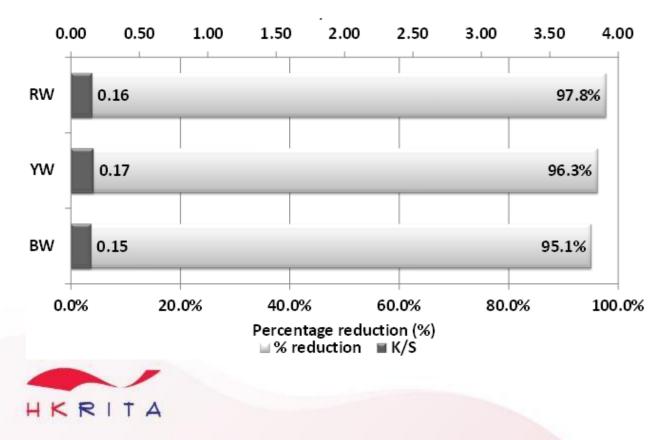
Cotton/PET blends

Knit & Woven,

no/minimal Lycra content

HKRITA

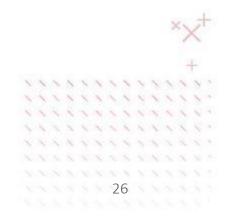
Filtration process of Hydrothermal Treatment



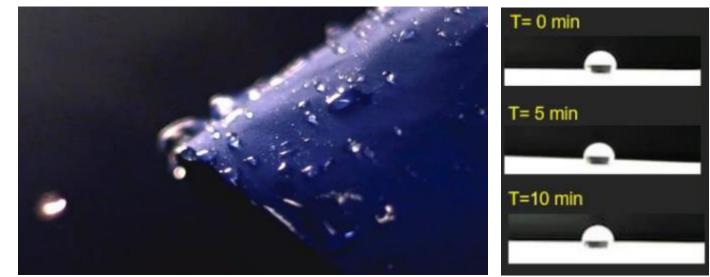
Cellulose powder and PET fibre separated by Hydrothermal treatment

Materials and Systems for Decolorization of PET

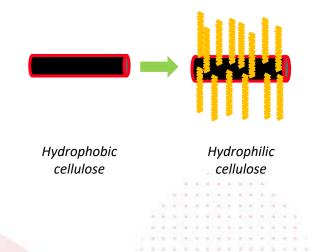
- De-colour recycled PET before processing and re-dyeing
- A green method using heat, water, CAC & green chemical to remove the color from polyester
- Remove more than 95% of colors

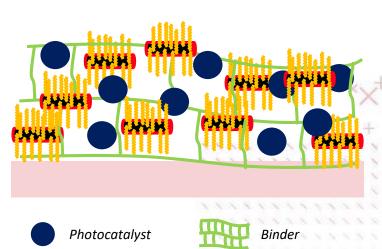

Hydrothermal Separation & Decoloring System in Indonesia

Extended technologies from Green Machine



PFC-free Functional DWR Surface Finish


A PFC-free, functional DWR surface finish from recycled cellulose powder which can be applied on natural fabrics, woven cotton/cellulose products.

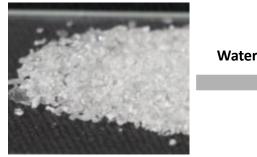

- Recycled cellulose powder → hydrophobic cellulose powder
- Development of a surface finishing dispersion with additives, e.g. photocatalyst, binder, and surfactant, stabilizer for durable water or soil repellent function

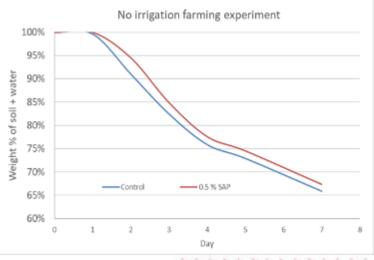
DWR function reference image

Cellulosic Superabsorbent Polymer (SAP)

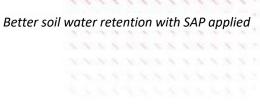
Turning the cellulose powder recovered into superabsorbent polymer (SAP) to be used as a biodegradable, water retaining aid for cotton plantation.

- SAP made from cellulosic powder is with liquid absorption capacity 31.4 (g saline solution material) and liquid retention capacity 26.6 (g saline solution/g material)
- Preliminary experiment shows higher growth rate and yield for cotton plant with SAP applied without additional irrigation
- Introducing fertilizer (NPK) into the cellulosic SAP - fertilizer will be released with water for better yield


HKR

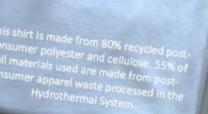

SAP made from

Hydrothermal Separation system


Cellulose recovered by

Cotton plantation experiment with Cellulosic SAP in Karnataka, India

Development of Functional Cellulose Composite Fibers Based on Recycled Cellulose


Development of functional regenerated fibers from recovered cellulose component from Hydrothermal Separation System, using a combination of nanocomposite techniques in wet spinning process.

- Mixing high DP cellulose (recycled/virgin viscose) with cellulose powder, adding nanocellulose as reinforcement to improve tenacity
- Addition of far IR emission and UV blocking functional particles for additional function

Finished fibre — mixing recovered cellulose powder with high DP cellulose and nanocellulose

															-	1
-	+	+														
-		-														
	1															
			1													
	.*															
													1			
												-	÷			
								۰.								
										6						

Garment to Garment Recycling System(G2G)

The Garment-to-Garment Recycling System is a mini-production line used to process post-consumer garments into clean and wearable recycled garments.

- 8 steps to recycle an used garment all fitted into a standard 40-foot container
- Anti-vibration, noise- and dustcontrolled design, the production line minimizes noise and disruption for operational compatibility within community spaces
- Completely waterless process no effluent discharge

Garment-to-garment System

The first Garment-to-garment recycling system located at The Mills, a revitalized art and cultural complex in Hong Kong

••••

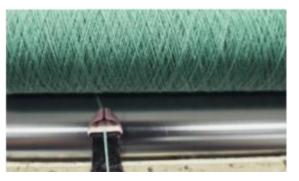
→The Mills – G2G

- HOW RECYCLE WORKS
- 47th International Exhibition of Inventions of Geneva 2019 – Gold Medal
- Red Dot Award: Product Design 2019
- Asia International Innovative Invention Award 2019 – Gold Award
- The 2019 Innovation by Design Awards (Retail Environment) – Finalist
 2022 iF Design Award

Garment-to-garment System

8 Steps in G2G Recycling:

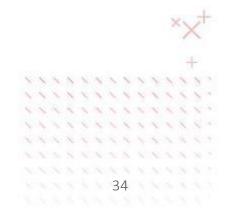
- 1. Sanitization by Ozone
- 2. Opening
- 3. Cleaning
- 4. Carding
- 5. Drawing
- 6. Spinning
- 7. Doubling & Twisting
- 8. 3D Knitting

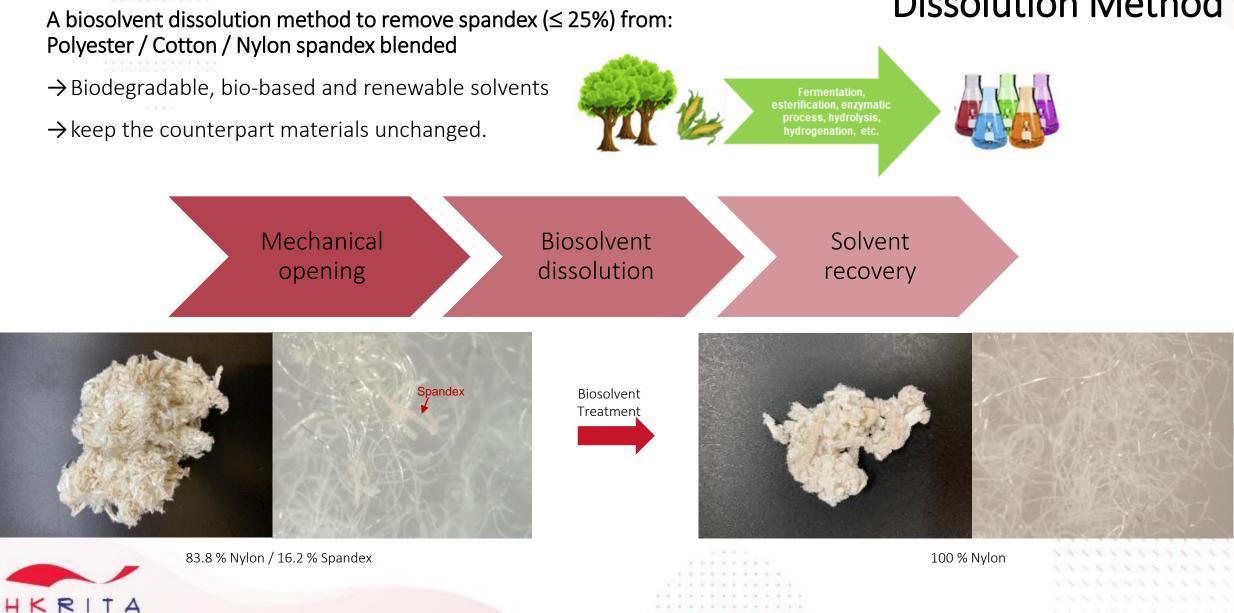


LOOOP in H&M Flagship Store at Drottninggatan, Stockholm

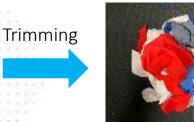
More information: https://about.hm.com/news/ general-news-2020/recyclingsystem--looop--helps-h-mtransform-unwantedgarments-i.html

HKRITA

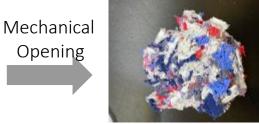




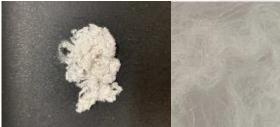
Other Blend Separation Technologies for Textile Recycling



Elastomeric Fiber Separation by a Biosolvent Dissolution Method

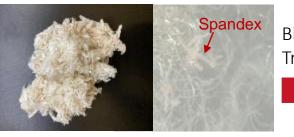


Polyester/Spandex Product


Trimmed Polyester/Spandex Fabric Blend

84.3 % Polyester / 15.7 % Spandex

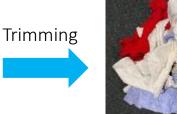
Spandex Field Biosolvent Treatment


100 % Polyester

Nylon/Spandex Product

Mechanical Opening

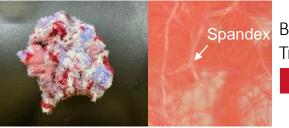
83.8 % Nylon / 16.2 % Spandex



100 % Nylon

Cotton/Spandex Product

HKRITA

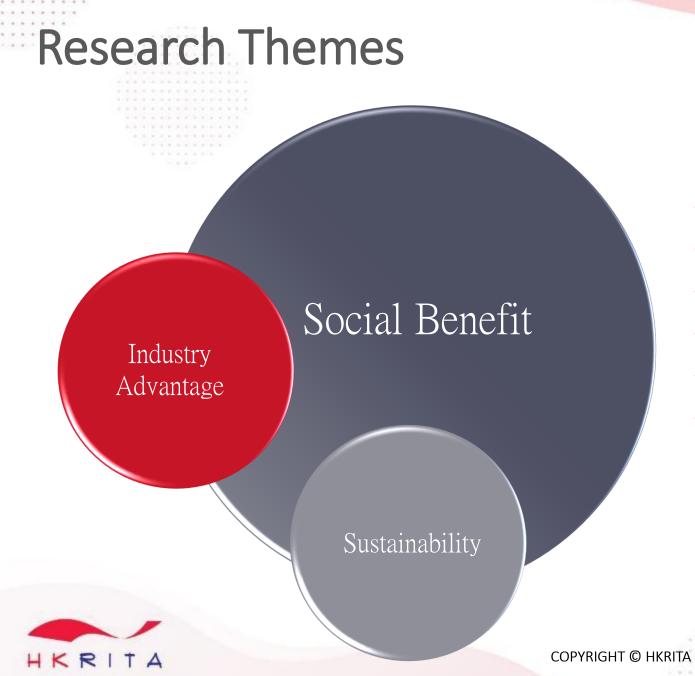


Trimmed Cotton/Spandex Fabric Blend

Trimmed Nylon/Spandex

Fabric Blend

Mechanical Opening



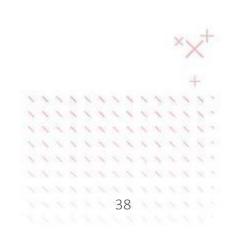
94.0 % Cotton / 6.0 % Spandex

100 % Cotton 36

- → Health & Wellness Materials & Systems
- → Apparel based System Solutions
- → High Performance Materials & Apparel

37

- \rightarrow E Apparel
- → Impact Resistant Materials
- → Smart Apparel





COPYRIGHT © HKRITA

-	+	+			-	. *									
*	1		-	*											
*		+													
-															
	.+														
													1		
											6	8			6
									Ξ.	-	-				

- THE END -

